Performs matrix transposition.
Case 1: Matrix operation
IppStatus ippmTranspose_m_32f(const Ipp32f* pSrc, int srcStride1, int srcStride2, int width, int height, Ipp32f* pDst, int dstStride1, int dstStride2);
IppStatus ippmTranspose_m_64f(const Ipp64f* pSrc, int srcStride1, int srcStride2, int width, int height, Ipp64f* pDst, int dstStride1, int dstStride2);
IppStatus ippmTranspose_m_32f_P(const Ipp32f** ppSrc, int srcRoiShift, int width, int height, Ipp32f** ppDst, int dstRoiShift);
IppStatus ippmTranspose_m_64f_P(const Ipp64f** ppSrc, int srcRoiShift, int width, int height, Ipp64f** ppDst, int dstRoiShift);
Case 2: Matrix array operation
IppStatus ippmTranspose_ma_32f(const Ipp32f* pSrc, int srcStride0, int srcStride1, int srcStride2, int width, int height, Ipp32f* pDst, int dstStride0, int dstStride1, int dstStride2, int count);
IppStatus ippmTranspose_ma_64f(const Ipp64f* pSrc, int srcStride0, int srcStride1, int srcStride2, int width, int height, Ipp64f* pDst, int dstStride0, int dstStride1, int dstStride2, int count);
IppStatus ippmTranspose_ma_32f_P(const Ipp32f** ppSrc, int srcRoiShift, int srcStride0, int width, int height, Ipp32f** ppDst, int dstRoiShift, int dstStride0, int count);
IppStatus ippmTranspose_ma_64f_P(const Ipp64f** ppSrc, int srcRoiShift, int srcStride0, int width, int height, Ipp64f** ppDst, int dstRoiShift, int dstStride0, int count);
IppStatus ippmTranspose_ma_32f_L(const Ipp32f** ppSrc, int srcRoiShift, int srcStride1, int srcStride2, int width, int height, Ipp32f** ppDst, int dstRoiShift, int dstStride1, int dstStride2, int count);
IppStatus ippmTranspose_ma_64f_L(const Ipp64f** ppSrc, int srcRoiShift, int srcStride1, int srcStride2, int width, int height, Ipp64f** ppDst, int dstRoiShift, int dstStride1, int dstStride2, int count);
pSrc, ppSrc |
Pointer to the source matrix or array of matrices. |
srcStride0 |
Stride between the matrices in the source array. |
srcStride1 |
Stride between the rows in the source matrix(ces). |
srcStride2 |
Stride between the elements in the source matrix(ces). |
srcRoiShift |
ROI shift in the source matrix(ces). |
width |
Source matrix width. |
height |
Source matrix height. |
pDst, ppDst |
Pointer to the destination matrix or array of matrices. |
dstStride0 |
Stride between the matrices in the destination array. |
dstStride1 |
Stride between the rows in the destination matrix. |
dstStride2 |
Stride between the elements in the destination matrix. |
dstRoiShift |
ROI shift in the destination matrix. |
count |
Number of matrices in the array. |
The function ippmTranspose is declared in the ippm.h header file. The function transposes the source matrix and stores the result in pDst or ppDst. The destination is obtained from the source matrix by transforming the columns of the source to the rows in the destination for each matrix element:
dst[j][i] = src[i][j],
0 ≤ i < height, 0 ≤ j < width.
Note that the destination matrix must have the number of columns equal to height and the number of rows equal to width.
The following examples demonstrate how to use the functions ippmTranspose_m_32f, ippmTranspose_m_32f_P, and ippmTranspose_ma_32f_L. For more information, see also examples in Getting Started.
IppStatus transpose_m_32f(void) { /* Source matrix with width=4 and height=3 */ Ipp32f pSrc[3*4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2 }; /* Destination matrix with width=3 and height=4 */ Ipp32f pDst[4*3]; /* Standard description for source and destination matrices */ int srcStride2 = sizeof(Ipp32f); int srcStride1 = 4*sizeof(Ipp32f); int dstStride2 = sizeof(Ipp32f); int dstStride1 = 3*sizeof(Ipp32f); IppStatus status = ippmTranspose_m_32f((const Ipp32f*)pSrc, srcStride1, srcStride2, 4, 3, pDst, dstStride1, dstStride2); /*
// It is recommended to check return status
// to detect wrong input parameters, if any
*/
if (status == ippStsNoErr) {
printf_m_Ipp32f("Transposed matrix:", pDst, 3, 4, status);
} else {
printf("Function returns status: %s \n", ippGetStatusString(status));
}
return status; }
The program above produces the following output:
Transposed matrix:
1.000000 5.000000 9.000000
2.000000 6.000000 0.000000
3.000000 7.000000 1.000000
4.000000 8.000000 2.000000
IppStatus transpose_m_32f_P(void) { /* Source data */ Ipp32f src[2*6] = { 1, 0, 0, 2, 0, 3, 0, 4, 5, 0, 0, 6 }; /* // Nonzero elements of interest are referred by mask using // Poiner descriptor: // Src width=3, height=2 */ int srcRoiShift = 0; Ipp32f* ppSrc[2*3] = { src, src+3, src+5, src+7, src+8, src+11 }; /* // Pointer description for destination matrix: // Dst width=2, height=3 */ Ipp32f dst[3*2]; int dstRoiShift = 0; Ipp32f* ppDst[3*2] = { dst, dst+1, dst+2, dst+3, dst+4, dst+5 }; IppStatus status = ippmTranspose_m_32f_P((const Ipp32f**)ppSrc, srcRoiShift, 3, 2, ppDst, dstRoiShift); /*
// It is recommended to check return status
// to detect wrong input parameters, if any
*/
if (status == ippStsNoErr) {
printf_m_Ipp32f_P("Transposed matrix:", ppDst, 2, 3, status);
} else {
printf("Function returns status: %s \n", ippGetStatusString(status));
}
/*
return status; }
The program above produces the following output:
Transposed matrix:
1.000000 4.000000
2.000000 5.000000
3.000000 6.000000
IppStatus transpose_ma_32f_L(void) { /* Source data: // 3 matrices with width=4 and height=2 */ Ipp32f src_a[2*4] = { 10, 11, 12, 13, 24, 25, 26, 27 }; Ipp32f src_b[2*4] = { 30, 31, 32, 33, 44, 45, 46, 47 }; Ipp32f src_c[2*4] = { 50, 51, 52, 53, 64, 65, 66, 67 }; /* // Layout description for 3 source matrices */ int srcRoiShift = 0; int srcStride2 = sizeof(Ipp32f); int srcStride1 = 4*sizeof(Ipp32f); Ipp32f* ppSrc[3] = { src_a, src_b, src_c }; /* // Layout description for destination matrices: // width=2, height=4, count=3 */ Ipp32f dst_a[4*2]; Ipp32f dst_b[4*2]; Ipp32f dst_c[4*2]; Ipp32f* ppDst[3] = { dst_a, dst_b, dst_c };
int dstRoiShift = 0; int dstStride2 = sizeof(Ipp32f); int dstStride1 = 2*sizeof(Ipp32f); IppStatus status = ippmTranspose_ma_32f_L((const Ipp32f**)ppSrc, srcRoiShift, srcStride1, srcStride2, 4, 2, ppDst, dstRoiShift, dstStride1, dstStride2, 3); /*
// It is recommended to check return status
// to detect wrong input parameters, if any
*/
if (status == ippStsNoErr) {
printf_ma_Ipp32f_L("3 transposed matrices:", ppDst,2,4,3, status);
} else {
printf("Function returns status: %s \n", ippGetStatusString(status));
}
return status; }
The program above produces the following output:
3 transposed matrices:
10.000000 24.000000 30.000000 44.000000 50.000000 64.000000
11.000000 25.000000 31.000000 45.000000 51.000000 65.000000
12.000000 26.000000 32.000000 46.000000 52.000000 66.000000
13.000000 27.000000 33.000000 47.000000 53.000000 67.000000
ippStsOk |
Returns no error. |
ippStsNullPtrErr |
Returns an error when at least one input pointer is NULL. |
ippStsSizeErr |
Returns an error when the input size parameter is equal to 0. |
ippStsStrideMatrixErr |
Returns an error when the stride value is not positive or not divisible by the size of the data type. |
ippStsRoiShiftMatrixErr |
Returns an error when the roiShift value is negative or not divisible by the size of the data type. |
ippStsCountMatrixErr |
Returns an error when the count value is less or equal to zero. |
Copyright © 2000 - 2010, Intel Corporation. All rights reserved.