LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/coul command

pair_style lj/coul/omp command

Syntax:

pair_style lj/coul flag_lj flag_coul cutoff (cutoff2) 

Examples:

pair_style lj/coul cut off 2.5
pair_style lj/coul cut long 2.5 4.0
pair_style lj/coul long long 2.5 4.0
pair_coeff * * 1 1
pair_coeff 1 1 1 3 4 

Description:

The lj/coul style computes the standard 12/6 Lennard-Jones and Coulombic potentials, given by

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, epsilon is the dielectric constant which can be set by the dielectric command, and Rc is the cutoff. If one cutoff is specified in the pair_style command, it is used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the LJ and Coulombic terms respectively.

The purpose of this pair style is to capture long-range interactions resulting from both attractive 1/r^6 Lennard-Jones and Coulombic 1/r interactions. This is done by use of the flag_lj and flag_coul settings. The In 't Veld paper has more details on when it is appropriate to include long-range 1/r^6 interactions, using this potential.

If flag_lj is set to long, no cutoff is used on the LJ 1/r^6 dispersion term. The long-range portion is calculated by using the kspace_style ewald/n command. The specified LJ cutoff then determines which portion of the LJ interactions are computed directly by the pair potential versus which part is computed in reciprocal space via the Kspace style. If flag_lj is set to cut, the LJ interactions are simply cutoff, as with pair_style lj/cut.

If flag_coul is set to long, no cutoff is used on the Coulombic interactions. The long-range portion is calculated by using any style, including ewald/n of the kspace_style command. Note that if flag_lj is also set to long, then only the ewald/n Kspace style can perform the long-range calculations for both the LJ and Coulombic interactions. If flag_coul is set to off, Coulombic interactions are not computed.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as described below:

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for this type pair. Note that if you are using flag_lj set to long, you cannot specify a LJ cutoff for an atom type pair, since only one global LJ cutoff is allowed. Similarly, if you are using flag_coul set to long, you cannot specify a Coulombic cutoff for an atom type pair, since only one global Coulombic cutoff is allowed.


Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.


Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the Lennard-Jones portion of the pair interaction, assuming flag_lj is cut.

This pair style supports the pair_modify table option since it can tabulate the short-range portion of the long-range Coulombic interaction.

This pair style does not support the pair_modify tail option for adding a long-range tail correction to the Lennard-Jones portion of the energy and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command, meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See the run_style command for details.


Restrictions:

This style is part of the USER-EWALDN package. It is only enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none


(In 't Veld) In 't Veld, Ismail, Grest, J Chem Phys (accepted) (2007).