2023

  1. Fluis Meet Solids, J.L.F. Abascal, B.B. Laird, E.G. Noya and K.J. Stebe,  J. Chem. Phys. 158, 220401 (2023).
  2. Structural characterization of systems with competing interactions confined in narrow spherical shells, H. Serna, A.G. Meyra, E.G. Noya and W.T. Gozdz, Soft Matter 19, 5103 (2023).
  3. Phases of surface-confined trivalent colloidal particles, P.M.J. Swinkels, Z. Gong, S. Sacanna, E.G. Noya and P. Schall, Soft Matter 19, 3414 (2023).
  4. Visualizing defect dynamics by assembling the colloidal graphene lattice, P.M.J. Swinkels, Z. Gong, S. Sacanna, E.G. Noya, and P. Schall,  Nat. Comm. 14, 1542 (2023).
  5. Estimation of bubble cavitation rates in a symmetrical Lennard-Jones mixture by NVT seeding simulations, C.P. Lamas, E. Sanz, C. Vega, and E.G. Noya,  J. Chem. Phys. 158, 124109 (2023).
  6. The water cavitation line as predicted by the TIP4P/2005 model, C.P. Lamas, C. Vega. E.G. Noya and E. Sanz, J. Chem. Phys. 158, 124504 (2023).
  7. Homogeneous nucleation rate of methane hydrate formation under experimental conditions, J. Grabowska, S. Blazquez, E. Sanz, E.G. Noya, I.M. Zeron, J. Algaba, J.M. Miguez, F.J. Blas, and C. Vega,J. Chem. Phys. 158, 114505 (2023).
  8. The Temperature of Maximum Density of Diluted Aqueous Solutions of Non-Polar Solutes: A molecular simulation study using TIP4P/2005 water and LJ point solutes, D. González-Salgado, E.G. Noya, E. Lomba, J. Mol. Liq. 381, 121815 (2023). 

2022

  1. Structural study of water/alcohol mixtures adsorbed in MFI and MEL porosils, P. Gómez-Álvarez, E. G. Noya, and E. Lomba, J. Mol. Liq. 368, 120527, (2022).
  2. Simulation and theoretical analysis of the origin of the temperature of maximum density of water, D. González-Salgado,  E. Lomba, and E.G. Noya, Fluid Phase Equi. 560, 113515 (2022).
  3. Phase diagram of the NaCl-system by computer simulation, V. Bianco, M.M. Conde, C.P. Lamas, E.G. Noya and E. Sanz, J. Chem. Phys. 156, 064505 (2022).
  4. Freezing point depression of salt aqueous solutions using the Madrid-2019 model, C.P. Lamas, C. Vega and E.G. Noya, J. Chem. Phys. 156, 134503 (2022).
  5. Maximum in density of electrolyte solutions: Learning about ion-water interactions and testing the Madrid-2019 force-field, L.F. Sedano, S. Blazquez, E.G. Noya, C. Vega and J. Troncoso,  J. Chem. Phys. 156, 154502 (2022).
  6. Self-assembly of optimally packed cylindrical clusters in spherical shells H. Serna, A.G. Meyra, E.G. Noya and W.T. Gozdz, J. Phys. Chem. B 126, 7059 (2022).

2021

  1. How to design an icosahedral quasicrystal through directional bonding, E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, Nature 596, 367-371 (2021).
  2. Modeling the temperature of maximum density of aqueous tert-butanol solutions, M. S. Marques, E. Lomba, E. G. Noya, D. González-Salgado, and M. Barbosa, Physica A 582, 126243 (2021).
  3. Formation and internal ordering of periodic microphases in colloidal models with competing interactions, H. Serna, A. Díaz-Pozuelo, E.G. Noya and W.T. Gozdz,Soft Matter 17, 4957-4968 (2021).
  4. Computational explorations in the space of one-component crystals, J.P.K. Doye and E.G. Noya, Proc. Natl. Acad. Sci. USA, 118, e2107024118 (2021).
  5. Programming patchy particles to form three-dimensional dodecagonal quasicrystals, D.F. Tracey, E.G. Noya, and J.P.K. Doye,  Journal of Chemical Physics 154, 194505 (2021).
  6. How ice grows from premelting films and water droplets, D.N. Sibley, P. Llombart, E.G. Noya, A. Archer and L.G. MacDowell, Nature Communications 12, 239 (2021).
  7. Structural and dynamical behaviour of colloids with competing interactions confined in slit pores, H. Serna, W.T. Gozdz and E.G. Noya, Int. J. Mol. Sci. 22, 11050 (2022).
  8. Homogeneous nucleation of NaCl in supersaturated solutions, C.P. Lamas, J.R. Espinosa, M.M. Conde, J. Ramírez, P. Montero de Hijes, E.G. Noya, C. Vega and E. Sanz, Phys. Chem. Chem. Phys. 25, 26843 (2021).

2020

  1. The influence of confinement on the structure of colloidal systems with competing interactions, H. Serna, E.G. Noya and W.T. Gozdz, Soft Matter, 16, 718 (2020).
  2. The temperature of maximum density for amino acid aqueous solutions. An experimental and molecular dynamics study, D. González-Salgado, J. Troncoso, and E. Lomba, Fluid Phase Equilibria, 521, 12703, (2020).
  3. Micelle-directed chiral seeded growth on anisotropìc gold nanocrystals G. González-Rubio, J. Mosquera, V. Kumar, A. Pedrazo-Tardajos, P. Llombart, D. Solis, I. Lobato, E.G. Noya, A. Guerrero-Martínez, J. M. Taboada, F. Obelleiro, L.G. MacDowell, S. Bals, L. M. Liz-Marzán, Science 368, 1472-1477 (2020).
  4. Confinement of Colloids with Competing Interaction in Ordered Porous Materials, H. Serna, E.G. Noya and W.T. Gozdz, The Journal of Physical Chemistry B 124, 10567-10577 (2020).
  5. The Young-Laplace equation for a solid-liquid interface, P. Montero de Hijes, K. Shi, E.G. Noya, E.E. Santiso, K.E. Gubbins, E. Sanz, and C. Vega, Journal of Chemical Physics 153, 191102 (2020).
  6. Surface phase transitions and crystal habits of ice in the atmosphere, P. Llombart, E.G. Noya and L.G. MacDowell,Science Advances 6, eaay9322 (2020).
  7. Rounded layering transitions on the surface of ice, P. Llombart, E.G. Noya, D. N. Sibley, A.J. Archer, and L.G. MacDowell, Phys. Rev. Lett. 124, 065702 (2020).

2019

  1. Adsorption of water, methanol, and their mixtures in slit graphite pores, Paulina Prslja, Enrique Lomba, Paula Gómez-Álvarez, Tomaz Urbic and Eva G. Noya, J. Chem. Phys. 150, 024705 (2019)
  2. Assembly of helical structures in systems with competing interactions, Horacio Serna, Eva G. Noya and Wojciech T. Gozdz, Langmuir 35, 702 (2019)
  3. Nucleation of pseudo hard-spheres and dummbells at moderate metastabilities: appearance of A15 Frank-Kasper phase at intermediate elongations, Itziar Zubieta, Miguel Vázquez del Saz, Pablo Llombart, Carlos Vega and Eva G. Noya, Physical Chemistry Chemical Physics 21, 1656 (2018).
  4. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods, G. González-Rubio, V. Kumar, P. Llombart, P. Díaz-Núñez, E. Bladt, T. Altantzis, S. Bals, O. Peña-Rodríguez, E.G. Noya, L.G. MacDowell, A. Guerrero-Martínez and L.M. Liz-Marzán, ACS Nano 13, 4424 (2019).
  5. Structure and water attachment rates of ice in the atmosphere: role of nitrogen, P. Llombart, R.M. Bergua, E.G. Noya and L.G. MacDowell, Physical Chemistry Chemical Physics 21, 19594 (2019).
  6. Structural transitions and bilayer formation of CTAB aggregates, P. Llombart, M.A. Palafox, L.G. MacDowell and E.G. Noya, Colloids and Surfaces A, 580, 123730 (2019).
  7. Assembly of clathrates from patchy particles with narrow patches, E.G. Noya, I. Zubieta, D.J. Pine and F. Sciortino, J. Chem. Phys. 151, 094502 (2019).
  8. Programming patchy particles to assemble into complex periodic structures, D.F. Tracey, E.G. Noya and J.P.K.Doye,  J. Chem. Phys. 151, 224506 (2019).

2018

  1. Study of short-chain alcohols and alcohol-water adsorption in MEL and MFI zeolites, Paula Gómez-Álvarez, Eva G. Noya, Enrique Lomba, Susana Valencia and Joao Pires, Langmuir 34, 12739 (2018).

2017

  1. Assembly of trivalent particles under confinement: from an exotic solid phase to a liquid phase at low temperature, Eva G. Noya, Noé G. Almarza and Enrique Lomba,  Soft Matter 13, 3221 (2017).
  2. NMRC- A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media, Vicente Sánchez-Gil, Eva G. Noya and Enrique Lomba, Computer Physics Communications 217, 198 (2017).

2016

  1. Temperature of Maximum Density and Excess Thermodynamics of Aqueous Mixtures of Methanol, Diego González-Salgado, K. Zemankova, Eva G. Noya and Enrique Lomba, Journal of Chemical Physics 144, 184505 (2016).
  2. Experimental and Simulation Studies of the Stepped Adsorption of Toluene on Pure-Silica MEL Zeolite, Vicente Sánchez-Gil, Eva G. Noya, Alejandro Sanz, Sheima J.  Khatib, José María Guil, Enrique Lomba, Ramona Marguta and Susana Valencia, Journal of Physical Chemistry C 120, 8640 (2016).
  3. Evidence of a structural change in pure silica MEL upon the adsorption of argon, Vicente Sánchez-Gil, Eva G. Noya, José María Guil, Enrique Lomba, Susana Valencia, Iván da Silva, Laszlo Pusztai and Laszlo Temleitner, Journal of Physical Chemistry C 120, 2260 (2016).
  4. Adsorption of argon on pure silica MEL:  Volumetric experiments and grand canonical Monte Carlo simulationsVicente Sánchez-Gil, Eva G. Noya, José María Guil, Enrique Lomba and Susana Valencia, Microporous and Mesoporous Materials 222, 218 (2016).

2015

  1.  A three dimensional integral equation approach for fluids under confinement: Argon in zeolites, Enrique Lomba, Cecilia Bores, Vicente Sánchez-Gil and Eva G. Noya, J. Chem. Phys. 143, 164703 (2015). Preprint:  arXiv:1506.08632.
  2. Phase behaviour of inverse patchy colloids: Effect of the model parameters, Eva G. Noya, and Emanuela Bianchi; J. Phys.: Condens. Matter 27, 234103 (2015).
  3. Reverse Monte Carlo modeling: the two distinct routes of calculating the experimental structure factor, V. Sánchez-Gil, E.G. Noya, L. Temleitner, and L. Pusztai,  J. Mol. Liq 207, 211 (2015). Preprint: arxiv:1501.06335.
  4. Entropy of hard spheres in the close packing limit, Eva G Noya and Noé G. Almarza, Molecular Physics 113, 1061 (2015).
  5. Applicability of quantum thermal baths to complex many-body systems with various degrees of anharmonicity, Javier Hernández-Rojas, Florent Calvo and Eva G. Noya,  Journal of Chemical Theory and Computation 11, 861 (2015).

2014

  1. Phase Diagram of Inverse Patchy Colloids assembling into an equilibrium laminar phase, Eva G. Noya, Ismene Kolovos, Günther Doppelbauer, Gerhard Kahl and Emanuela Bianchi, Soft Matter 10, 8464 (2014).
  2. Reverse Monte Carlo modelling in confined media, Vicente Sánchez, Eva G. Noya and Enrique Lomba, The Journal of Chemical Physics 140, 024504 (2014).

2013

  1. Free energy calculations for molecular solids using GROMACS, Juan Luis Aragonés, Eva. G. Noya, Chantal Valeriani and Carlos Vega, The Journal of Chemical Physics 139, 034104 (2013).
  2. Nucleotide dependent lateral and longitudinal interactions in microtubules, Andrea Grafmuller; Eva G. Noya; Gregory A. Voth,  Journal of Molecular Biology 425, 2232 (2013).
  3. A computer program to evaluate the NVM propagator for rigid asymmetric tops for use in path integral simulations of rigid bodies,C. McBride, E. G. Noya and C. Vega,Computer Physics Communications 184, 885 (2013).

2012

  1. Three dimensional patchy lattice model for empty fluids, N. G. Almarza, J. M. Tavares, E. G. Noya and M. M. Telo da Gama, J. Chem. Phys. 137, 244902 (2012).
  2. Local order parameter for use in driving homogeneous ice nucleation with all-atom models of water, Aleks Reinhardt, Jonathan P. K. Doye, Eva G. Noya and Carlos Vega, J. Chem. Phys. 137, 194504 (2012).
  3. A study of the influence of isotopic substitution on the melting point and temperature of maximum density of water by means of path integral simulations of rigid models, Carl McBride, Juan L. Aragones, Eva G. Noya, and Carlos Vega, Physical Chemistry Chemical Physics 14, 15199-15205 (2012).
  4. Self-assembly scenarios of patchy particles, G. Doppelbauer, E. G. Noya, E. Bianchi, and G. Kahl, Soft Matter 8, 7768 (2012).
  5. The phase diagram of water from quantum simulations, C. McBride, E. G. Noya, J. L. Aragonés, M. M. Conde, and C. Vega, Physical Chemistry Chemical Physics 14, 10140 (2012).
  6. Competing ordered structures formed by particles with a regular tetrahedral patch decoration, Günther Doppelbauer, Eva G. Noya, Emanuela Bianchi and Gerhard Kahl, Journal of Physics: Condensed Matter 24, 284124 (2012).

2011

  1. A quantum propagator for path-integral simulations of rigid molecules, Eva G. Noya, Carlos Vega and Carl McBride, Journal of Chemical Physics 134, 054117 (2011).
  2. Molecular simulation and adsorption studies of n-hexane in ZSM-11 zeolites, R. Marguta, S.J. Khatib, J.M. Guil, E. Lomba, E.G. Noya, J.A. Perdigón-Melon, and S. Valencia,Microporous and Mesoporous Materials 142, 158 (2011).
  3. Phase transitions of a lattice-model for patchy particles with tetrahedral symmetry, N. G. Almarza and E. G. Noya, Molecular Physics 109, 65 (2011) .
  4. Path integral Monte Carlo simulations for rigid rotors and their application to water, E. G. Noya, L.M. Sese, R. Ramirez, C. McBride, M.M. Conde and C. Vega, Molecular Physics 109, 149 (2011).

2010

  1.  The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry, E. G Noya, C. Vega, J.P.K. Doye and A. A. Louis, Journal of Chemical Physics 132, 234511 (2010) .
  2. Can gas hydrates be described using classical computer simulations?, M.M. Conde, C. Vega, C. McBride, E.G. Noya, R. Ramirez and L.M. Sese, Journal of Chemical Physics 132, 114503 (2010).
  3. Heat capacity of water: a signature of nuclear quantum effects, C. Vega, M.M. Conde, C. McBride, J.L.F. Abascal, E.G. Noya, R. Ramirez and L.M. Sese, Journal of Chemical Physics 132, 046101 (2010).
  4. Nuclear quantum effects in water clusters: the role of molecular flexibility, B.S. Gonzalez, E.G. Noya, C. Vega and L.M. Sese, Journal of Physical Chemistry B 114, 2484 (2010).

2009

  1. Quantum effects on the maximum in density of water, E.G. Noya, C. Vega, L.M. Sese and R. Ramirez, Journal of Chemical Physics 131, 124518 (2009).
  2. Quantum contributions in the ice phases: The path to a new empirical model for water- TIP4PQ/2005, C. McBride, C. Vega, E.G. Noya, R. Ramirez and L.M. Sese, Journal of Chemical Physics 131, 024506 (2009).
  3. Heat pulse rectification in carbon nanotube y-junctions, E. G. Noya, D. Srivastava and M. Menon, Physical Review B 79, 115432 (2009).
  4. Anomalies in water as obtained from computer simulation of the TIP4P/2005 model: density maxima and density, isothermal compressibility and heat capacity minima, H.L. Pi, J.L. Aragones, C. Vega, E.G. Noya, J.L. Abascal, M.A. Gonzalez and C. McBride, Molecular Physics 107, 365 (2009).
  5. The phase diagram of water at high pressures as obtained by computer simulation: the appearance of a plastic crystal phase, J.L. Aragonés, M.M. Conde, E.G. Noya and C. Vega, Physical Chemistry Chemical Physics 11, 543 (2009).

2008

  1.  Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbels and patchy particles, E. G. Noya, M. M. Conde amd C. Vega, Journal of Chemical Physics 19, 104704 (2008).
  2. Determination of the melting point of hard-spheres by the direct coexistence method, E. G. Noya, C. Vega and E. de Miguel, Journal of Chemical Physics 128, 154507 (2008).
  3. Determination of phase diagram by computer simulation: methodology and applications to water, electrolytes and proteins, C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya, Journal of Physics: Condensed Matter 20, 153101 (2008).

2007

  1. Complete phase behaviour of the symmetrical colloidal electrolyte, J.B. Caballero, E. G. Noya and C. Vega, Journal of Chemical Physics 127, 244910 (2007).
  2. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach, C. Vega and E. G. Noya, Journal of Chemical Physics 127, 154113 (2007).
  3. Properties of ices at 0K: a test of water models, J. L. Aragones, E. G. Noya, J. L. F. Abascal and C. Vega, Journal of Chemical Physics 127, 154518 (2007).
  4. Equation of state, thermal expansion coefficient and isothermal compressibility of ices Ih, II, III, V and VI, as obtained from computer simulation, E. G. Noya, C. Menduina, J. L. Aragones, and E. G. Noya, Journal of Physical Chemistry C 111, 15877 (2007).
  5. Phase diagram of model anisotropic particles with octahedral symmetry, E. G. Noya, C. Vega, J. P. K. Doye, and A. A. Louis, Journal of Chemical Physics 127, 054501 (2007).
  6. Controlling crystallization and its absence: proteins, colloids and patchy models, J. P. K. Doye, A. A. Louis, I.-C. Lin, L. R. Allen, E. G. Noya, A. W. Wilber, H. C. Kok, and R. Lyus, Physical Chemistry-Chemical Physics 9, 2197 (2007).
  7. Reversible self-assembly of patchy particles into monodisperse clusters, A. W. Wilber, J. P. K. Doye, A. A. Louis, E. G. Noya, M. A. Miller and P. Wong, Journal of Chemical Physics 127, 085106 (2007).
  8. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour, E. G. Noya, J. P. K. Doye and D. J. Wales, European Physics Journal D 43, 57 (2007).

2006

  1. Magnetic coupling in the Fe2Mn4 cluster: A fully unconstrained density-functional study, R. C. Longo, E. G. Noya, A. Vega and L. J. Gallego, Solid State Communications 140, 480 (2006).
     
  2. Theoretical study of the melting of Aluminium clusters, E. G. Noya, J. P. K. Doye and F. Calvo, submitted to Physical Review B 73, 125407 (2006).
  3. Structural transitions in the 309-atom magic number Lennard-Jones cluster, E. G. Noya and J. P. K. Doye, Journal of Chemical Physics 124, 104503 (2006).

2005

  1. A fully unconstrained density-functional study of the structures and magnetic moments of small Mnn clusters (n=2-7), R. C. Longo, E. G. Noya, and L. J. Gallego, Physical Review B 72, 174409 (2005).
  2. Non-collinear magnetic order in the six-atom Mn cluster, R. C. Longo, E. G. Noya and L. J. Gallego, Journal of Chemical Physics 122, 226102 (2005).
  3. A density-functional study of the structures, binding energies and total spins of Ni-Fe clusters using non-local norm-conserving pseudopotentials and the generalized gradient approximation, R. C. Longo, E. G. Noya and L. J. Gallego, Journal of Chemical Physics 122, 084311 (2005).

2004

  1. Thermal conductivity of carbon nanotube peapods, E. G. Noya, D. Srivastava, L. A. Chernozatonskii, and M. Menon, Physical Review B 70, 115416 (2004).
  2. Structural and magnetic properties of Fen clusters at the Al(001) surface: Early transition from paramagnetic to ferromagnetic, R. Robles, R. C. Longo, E. G. Noya, A. Vega, and L. J. Gallego, Physical Review B 69, 115427 (2004).
  3. Geometric structure and electronic properties of neutral anionic Fe2C3 and Fe2C4 clusters, as obtained by density-functional calculations, E. G. Noya, R. C. Longo, and L. J. Gallego, Journal of Chemical Physics 120, 2069 (2004).

2003

  1. Density-functional calculations of the structures, binding energies, and spin multiplicities of Fe-C clusters, E. G. Noya, R. C. Longo, and L. J. Gallego, Journal of Chemical Physics 119, 11130 (2003).
  2. The structures of silicon doped intermediate size carbon clusters, E. G. Noya, and M. Menon, Journal of Chemical Physics 119, 3594 (2003).

2002

  1. Amorphization of Ni-Al alloys by fast quenching from the liquid state: a molecular dynamics study, E. G. Noya, C. Rey and L. J. Gallego, Journal of Non-Crystalline Solids 298, 60 (2002).