next up previous contents
Next: LHFCALC Up: HF type calculations Previous: HF type calculations   Contents

Introduction: HF functional

The non-local Fock exchange energy, $E_x$, (in real space) can be written as

\begin{displaymath}
E_{\mathrm{x}}= -\frac{e^2}{2}\sum_{{\bf k}n,{\bf q}m}
f_{{...
...f r}')\phi_{{\bf q}m}({\bf r})}
{\vert {\bf r}-{\bf r}' \vert}
\end{displaymath} (19)

with $\{\phi_{{\bf k}n}({\bf r})\}$ being the set of one-electron Bloch states of the system, and $\{f_{{\bf k}n}\}$ the corresponding set of (possibly fractional) occupational numbers. The sums over $\bf k$ and $\bf q$ run over all $k$-points chosen to sample the Brillouin zone (BZ), whereas the sums over $m$ and $n$ run over all bands at these $k$-points.

The corresponding non-local Fock potential is given by

\begin{displaymath}
V_x\left({\bf r},{\bf r}'\right)=
-\frac{e^2}{2}\sum_{{\bf q...
...f r})}
{\vert {\bf r}-{\bf r}' \vert}
e^{i{\bf q}\cdot{\bf r}}
\end{displaymath} (20)

where $u_{{\bf q}m}({\bf r})$ is the cell periodic part of the Bloch state, $\phi_{{\bf q}n}({\bf r})$, at $k$-point, $\bf q$, with band index $m$.

Using the decomposition of the Bloch states, $\phi_{{\bf q}m}$, in plane waves,

\begin{displaymath}
\phi_{m{\bf q}}({\bf r})=
\frac{1}{\sqrt{\Omega}}
\sum_{\bf G}C_{m{\bf q}}({\bf G})e^{i({\bf q}+{\bf G}) \cdot {\bf r}}
\end{displaymath} (21)

Equ. (6.14) can be rewritten as
\begin{displaymath}
V_x\left({\bf r},{\bf r}'\right)=
\sum_{\bf k}\sum_{{\bf G}{...
... {\bf G},{\bf G}'\right)
e^{-i({\bf k}+{\bf G}')\cdot{\bf r'}}
\end{displaymath} (22)

where
\begin{displaymath}
V_{\bf k}\left( {\bf G},{\bf G}'\right)=
\langle {\bf k}+{\b...
...}}({\bf G}-{\bf G}'')}
{\vert{\bf k}-{\bf q}+{\bf G}''\vert^2}
\end{displaymath} (23)

is the representation of the Fock potential in reciprocal space.

Note: For a comprehensive description of the implementation of the Fock-exchange operator within the PAW formalism see Ref. [66]


next up previous contents
Next: LHFCALC Up: HF type calculations Previous: HF type calculations   Contents
Georg Kresse
2009-04-23