next up previous contents
Next: Efficient single band eigenvalue-minimization Up: Algorithms used in VASP Previous: Simple Davidson iteration scheme   Contents


Single band, steepest descent scheme

The Davidson iteration scheme optimizes all bands simultaneously. Optimizing a single band at a time would save the storage necessary for the NBANDS gradients. In a simple steepest descent scheme the preconditioned residual vector $p_n$ is orthonormalized to the current set of wavefunctions i.e.

\begin{displaymath}\vspace*{1mm}
g_n =(1- \sum_{n'} \vert \phi_{n'} \rangle \langle\phi_{n'} \vert {\bf S} ) \vert p_n\rangle .
\end{displaymath} (45)


Then the linear combination of this 'search direction' $g_n$ and the current wavefunction $\phi_n$ is calculated which minimizes the expectation value of the Hamiltonian. This requires to solve the $2 \times 2$ eigenvalue problem

\begin{displaymath}
\langle b_i \vert {\bf H} - \epsilon {\bf S} \vert b_j \rangle = 0,
\end{displaymath}

with the basis set

\begin{displaymath}
b_{i,i=1,2} = \{ \phi_{n} / g_{n} \}.
\end{displaymath}



Georg Kresse
2009-04-23